Cálculos com Binários
Nesta seção faremos alguns cálculos com números binários, considerando cada um de seus dígitos, também chamados de bits. Além de operações aritiméticas clássicas como adição, subtração, multiplicação e divisão, estudaremos também conjunção, disjunção, negação e disjunção exclusiva. Também incluiremos outras operações bit-a-bit que fogem da álgebra tradicional, como deslocamento e rotação de bits. Todas são importantes pois existem no contexto do Assembly, que estudaremos no futuro.
Você pode encontrar mais sobre este assunto pesquisando por álgebra booleana e operações bit-a-bit (bitwise).
Conjunção (AND)
Dados dois bits x e y, a conjunção entre eles resulta em 1 se ambos forem iguais a 1. Na programação, o seu símbolo na programação é normalmente o "e comercial" (&). Sendo assim, a chamada tabela verdade desta operação é:
0
0
0
0
1
0
1
0
0
1
1
1
Então suponha que queiramos calcular a conjunção do número 0xa com 12. Sim, estamos misturando dois sistemas de numeração (hexadecimal e decimal) na mesma operação. E por que não? O segredo é converter para binário e fazer o cálculo para cada bit, respeitando a tabela verdade da conjunção. Mãos à obra:
O resultado é 0b1000, ou 8 em decimal. Sendo assim, as linhas abaixo farão o mesmo cálculo, ainda que utilizem sistemas de numeração (bases) diferentes:
Por que utilizei tantas bases diferentes? Quero com isso por na sua cabeça que um número é só um número, independente da base na qual ele está sendo representado.
Disjunção (OR)
O resultado da disjunção entre dois bits x e y é 1 se pelo menos um deles for 1. Sendo assim, segue a tabela verdade:
0
0
0
0
1
1
1
0
1
1
1
1
Na programação, o símbolo normalmente é a barra em pé (|). Por exemplo, vamos calcular a disjunção entre 8 e 5:
O resultado é 0b1101, que é 13 em decimal.
Aí você pode questionar:
Opa, então a disjunção é tipo a soma?
Te respondo:
Não.
Veja que o resultado da disjunção entre 9 e 5, também é 13:
Isso porque numa soma entre 1 e 1 o resultado seria 10 (2 em decimal), já na operação OU o resultado é 1.
Disjunção Exclusiva (XOR)
A disjunção exclusiva entre x e y resulta em 1 se somente um deles for 1. Sendo assim:
0
0
0
0
1
1
1
0
1
1
1
0
Assim como a disjunção é normalmente chamada de "OU", a disjunção exclusiva é chamada de "OU exclusivo", ou simplesmente XOR. O símbolo que representa a disjunção exclusiva em programação é o circunflexo (^).
Algumas propriedades importantes desta operação são:
Você pode aplicá-la em qualquer ordem. Então, x ^ (y ^ z) = (x ^ y) ^ z por exemplo.
O XOR de um número com ele mesmo é sempre zero.
O XOR de um número com zero é sempre ele mesmo.
A operação XOR tem vários usos em computação. Alguns exemplos:
Detecção de Diferenças
É possível saber se um número é diferente de outro com XOR. Se os números forem diferentes, o resultado é diferente de zero. Por exemplo, tomemos um XOR entre 8 e 5 e outro entre 5 e 5:
Zerar Variáveis
Fica claro que é possível zerar variáveis bastando fazer uma operação XOR do valor dela com ele mesmo, independentemente de que valor é este:
Troca de Valores Entre Duas Variáveis
O algoritmo conhecido por XOR swap consiste em trocar os valores de duas variáveis somente com operações XOR, sem usar uma terceira variável temporária. Basta fazer, nesta ordem:
XOR entre x e y e armazenar o resultado em x.
XOR entre x e y e armazenar o resultado em y.
XOR entre x e y e armazenar o resultado em x.
Veja:
Analisando em binário:
Cifragem
Dado um número x, é possível calcular o resultado de uma operação XOR com um valor qualquer que chamaremos de chave. Se usarmos a mesma chave num XOR com este resultado, obtemos o número original:
Portanto, para uma cifrabem básica, se você quiser esconder o valor original de um número antes de enviá-lo numa mensagem, basta fazer um XOR dele com uma chave que só você e o receptor da mensagem conheça (0x42 no exemplo). Assim você usa a chave para fazer a operação XOR com ele e instrui o receptor da mensagem (por outro canal) a usar a mesma chave numa operação XOR afim de obter o número original. Claro que esta cifragem é muito simples, e consequentemente muito fraca e fácil de quebrar, mas está aqui em caráter de exemplo.
Em textos matemáticos sobre lógica, o circunflexo ^ representa conjunção ao invés de disjunção exclusiva. Já em softwares matemáticos, pode significar potência, por exemplo: 2^32 é dois elevado à trigésima segunda potência.
Na língua Portuguesa utilizamos a palavra "OU" no sentido de "OU exclusivo". Por exemplo, quando você pede "Pizza de presunto ou pepperoni ou lombo", quer dizer que só quer um dos sabores (exclusividade). Se fosse uma disjunção tradicional "OU", o garçom poderia trazer presunto com pepperoni, ou mesmo todos os três ingredientes e você não poderia reclamar. :)
Deslocamento (SHL e SHR)
O deslocamento para a esquerda (shift left) consiste em deslocar todos os bits de um número para a esquerda e completar a posição criada mais à direita com zero. Tomemos por exemplo o número 7 e uma operação SHL com 1 (deslocar uma vez para a esquerda):
Assim podemos perceber que deslocar à esquerda dá no mesmo que multiplicar por 2. Veja:
No exemplo acima deslocamos 1 bit do número 7 (0b111) para a esquerda três vezes, que resultou em 56. Seria o mesmo que deslocar 3 bits de uma só vez:
De forma análoga, o deslocamento para a direita (shift right), ou simplesmente SHR, consiste em deslocar todos os _bits_de um número para a direita e completar a posição criada à esquerda com zero. Tomando o mesmo 7 (0b111):
O resultado é uma divisão inteira (sem considerar o resto) por 2. Assim, 7/2 = 3 (e sobra 1, que é desconsiderado neste cálculo). Esta é de fato uma maneira rápida de dobrar ou calcular a metade de um número.
Rotação (ROL e ROR)
Assim como no deslocamento, a rotação envolve deslocar os bits de um número para a esquerda (rotate left) ou direita (rotate right) mas o bit mais significativo (mais à esquerda) é posto no final (mais à direita), no lugar de zero. Por isso é necessário considerar o tamanho. Tomemos o número 5 como exemplo:
O bit zero, que está mais à esquerda, "deu a volta" e veio parar ao lado direito do bit 1, mais à direita do número 0b00000101.
Analise com o número 133 agora:
Desta vez o bit 1, que estava mais à esquerda, veio parar ao lado direito do bit mais à direita, e todos os outros bits foram "empurrados" para a esquerda.
Não estamos limitados a fazer operações ROL e ROR somente com 1. O byte 133 ROL 3 por exemplo resulta em 0x2c. Você é capaz de conferir se acertei?
Negação (NOT)
Para negar um bit, basta invertê-lo:
0
1
1
0
No entanto, para inverter o número maior, como por exemplo 0b100, é preciso saber seu tamanho. Analise os exemplos abaixo para tamanhos variados:
1 byte
0b00000100
0b11111011
2 bytes (WORD)
0b0000000000000100
0b1111111111111011
4 bytes (DWORD)
0b00000000000000000000000000000100
0b11111111111111111111111111111011
Fazer essa inversão é o mesmo que calcular o complemento (também chamado de "complemento de um") de um número. Para obter seu simétrico, é preciso ainda somar uma unidade, como vimos anteriormente. Por isso, um NOT bit-a-bit no número 4, por exemplo, resulta em -5. Veja:
Os processadores Intel x86 trabalham com muitas outras operações bitwise, mas detalhá-las foge do escopo deste livro. Conforme você avançar no estudo de engenharia reversa, vai se deparar com elas.
Last updated